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1 Limit Points, Closure, and Continuity

1.1 Limit points and closure

Definition 1.1. Let A ⊆ X and p ∈ X. Then p is a limit point of A if every neighborhood
U of p satisfies U ∩ (A \ {p}) 6= ∅; i.e. U has a point of A besides p.

Remark 1.1. A limit point of a set may not be contained in the set.

Theorem 1.1. A ⊆ X is closed iff A contains all its limit points.

Proof. ( =⇒ ) If X is closed, then X \ A is open. So for any x ∈ X \ A, X \ A us a
neighborhood of x. But (X \ A) ∩ (A \ {x}) = ∅. So x is not a limit point of A. So any
limit point of A is in A.

(⇐= ) If A contains all its limit points, we want to show that X\A is open. If x ∈ X\A,
it is not a limit point, so there exists a neighborhood Ux of x with Ux ∩ (A \ {x}) = ∅. So
Ux ⊆ X \ A. Then X \ A =

⋃
x∈X\A Ux is a union of open sets making it open. So A is

closed.

Definition 1.2. If A ⊆ X, the closure of A is

A := A ∪ {limit points of A} .

Theorem 1.2. A is the smallest closed set containing A.

Proof. If A ⊆ B ⊆ X and B is closed, any limit point of A is a limit point of B. B is
closed, so B contains all its limit points; then B contains all the limit points of A. So
A ⊆ B.

We need to show that A is closed. Let x ∈ X \ A; then x is not a limit point of
A. So there exists a neighborhood Ux of x such that Ux ⊆ X \ A. We want to show
that Ux ⊆ X \ Ā. If y ∈ Ux is a limit point of A, then Ux is a neighborhood of y, and
Ux∩A = ∅. But y is a limit point, so such a neighborhood shouldn’t exist. So Ux∩A = ∅;
i.e. Ux ⊆ X \A. So X \A =

⋃
x∈X\A Ux, making it open. So Ā is closed.
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Corollary 1.1. A ⊆ X is closed iff A = A.

Definition 1.3. A base of a topological space X is a collection of open sets such that if
A ⊆ X is open, A is a union of open sets in the collection.

Example 1.1. Rn with the usual topology has base {Bε(x) : x ∈ Rn, ε > 0}.1

1.2 Continuity

Definition 1.4. A function f : X → Y is continuous if f−1(A) ⊆ X is open whenever
A ⊆ Y is open.2

A continuous function is often called a map.

Theorem 1.3. If A ⊆ X has the subspace topology, then the inclusion i : A→ X, sending
a 7→ a, is continuous.

Proof. If U ⊆ X is open, then

i−1(U) = {a ∈ A : i(a) ∈ U} = A ∩ U,

which is open by the definition of the subspace topology.

Theorem 1.4. If f : X → Y and g : Y → Z are continuous, then so is g ◦ f : X → Z.

Proof. Note that (g ◦ f)−1 = f−1 ◦ g−1. If A ⊆ Z is open, then g−1(A) is open, as g is
continuous. So f−1(g−1(A)) is open, as f is continuous. This says that (g ◦ f)−1(A) is
open, so g ◦ f is continuous.

Corollary 1.2. If f : X → Y is continuous and A ⊆ X has the subspace topology, then
f |A : A→ Y is continuous, where f |A(a) = f(i(a)).

Theorem 1.5. The following are equivalent.

1. f : X → Y is continuous.

2. f−1(A) is closed whenever A ⊆ Y is closed.

3. If {Uα} is a base for the topology on Y , then f−1(Uα) is open for all α.

Proof. See textbook.

Example 1.2. Let X be a set with the discrete topology, let Y be any set with any
topology, and let f : X → Y be any function. Then f is continuous, as f−1(A) ⊆ X is
always open for any subset A ⊆ Y .

1Last lecture, we used this notation to mean closed balls. Here, we mean open, so we are using the “<”
notation, rather than “≤.”

2While f might not have an inverse, we mean here that f−1(A) = {x ∈ X : f(x) ∈ A}.
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Example 1.3. Continuity from anaylsis is the same as continuity in topology, when they
both apply. If f : (X, dx) → (Y, dy) is a function of metric spaces, then f is “analysis
continuous” if for all x ∈ X and ε > 0, f(Bδ(x)) ⊆ Bε(f(x)). So if A ⊆ Y is open, we want
to show that f−1(A) is open. So if x ∈ f−1(A), then f(x) ∈ A. So if A open, there exists
some ε > 0 such that Bε(f(x)) ⊆ A. Since f is “analysis continuous,” there exists a δ > 0
such that f(Bδ(x)) ⊆ Bε(f(x)) ⊆ A. So Bδ(x) ⊆ f−1(A), and then f−1(A) is open. So if
f is “analysis continuous,” f is “topology continuous.” The converse is left as an exercise.
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